Cubics - Past Edexcel Exam Questions

1. Factorise completely

\[x^3 - 4x^2 + 3x \]

[3]

Question 1 - Jan 2006

2. Given that \(f(x) = (x^2 - 6x)(x - 2) + 3x \),

(a) express \(f(x) \) in the form \(x(ax^2 + bx + c) \), where \(a \), \(b \) and \(c \) are constants. [3]

(b) Hence factorise \(f(x) \) completely. [2]

(c) Sketch the graph of \(y = f(x) \), showing the coordinates of each point at which the graph meets the axes. [3]

Question 9 - May 2006

3. (a) On the same axes sketch the graphs of the curves with equations

i. \(y = x^2(x - 2) \) [3]

ii. \(y = x(6 - x) \) [3]

and indicate on your sketches the coordinates of all the points where the curves cross the \(x \)-axis.

(b) Use algebra to find the coordinates of the points where the graphs intersect. [7]

Question 10 - Jan 2007

4. The curve \(C \) has equation

\[y = (x + 3)(x - 1)^2 \]

(a) Sketch \(C \), showing clearly the coordinates of the points where the curve meets the coordinate axes. [4]
(b) Show that the equation of C can be written in the form

$$y = x^3 + x^2 - 5x + k,$$

where k is a positive integer, and state the value of k. [2]

There are two points on C where the gradient of the tangent to C is equal to 3.

(c) Find the x-coordinates of these two points. [6]

Question 10 - Jan 2008

5. Factorise completely

$$x^3 - 9x$$

[3]

Question 2 - Jun 2008

6. The point $P(1, a)$ lies on the curve with equation $y = (x + 1)^2(2 - x)$.

(a) Find the value of a. [1]

(b) On the axes below, sketch the curves with the following equations:

i. $y = (x + 1)^2(2 - x),$

ii. $y = \frac{2}{x}$.

On your diagram show clearly the coordinates of any points at which the curves meet the axes. [5]
(c) With reference to your diagram in part (b), state the number of real solutions to
the equation

\[(x + 1)^2(2 - x) = \frac{2}{x}\]

[1]

Question 8 - Jan 2009

7. (a) Factorise completely \(x^3 - 6x^2 + 9x\). [3]

(b) Sketch the curve with equation

\[y = x^3 - 6x^2 + 9x\]

showing the coordinates of the points at which the curve meets the \(x\)-axis. [4]

Using your answer to part (b), or otherwise,

(c) sketch, on a separate diagram, the curve with equation

\[y = (x - 2)^2 - 6(x - 2)^2 + 9(x - 2)\]

showing the coordinates of the points at which the curve meets the \(x\)-axis. [2]

Question 10 - Jun 2009

8. (a) Factorise completely \(x^3 - 4x\). [3]

(b) Sketch the curve with equation

\[y = x^3 - 4x,\]

showing the coordinates of the points at which the curve meets the \(x\)-axis. [3]

The point \(A\) with \(x\)-coordinate -1 and the point \(B\) with \(x\)-coordinate 3 lie on the curve \(C\).

(c) Find an equation of the line which passes through \(A\) and \(B\), giving your answer in the form \(y = mx + c\), where \(m\) and \(c\) are constants. [5]
(d) Show that the length of AB is $k\sqrt{10}$, where k is a constant to be found. \[2\]

Question 9 - Jan 2010

9. (a) On the axes below sketch the graphs of
i. $y = x(4 - x)$,
ii. $y = x^2(7 - x)$,
showing clearly the coordinates of the points where the curves cross the coordinate axes. \[5\]

(b) Show that the x-coordinates of the points of intersection of

$$y = x(4 - x) \quad \text{and} \quad y = x^2(7 - x)$$

are given by the solutions to the equation $x(x^2 - 8x + 4) = 0$. \[3\]

The point A lies on both the curves and the x and y coordinates of A are both positive.

(c) Find the exact coordinates of A, leaving your answer in the form $(p + q\sqrt{3}, r + s\sqrt{3})$, where p, q, r and s are integers. \[7\]

Question 10 - May 2010

10. (a) Sketch the graphs of
i. $y = x(x + 2)(3 - x)$,
ii. $y = -\frac{2}{x}$,
showing clearly the coordinates of all the point where the curves cross the coordinate axes. \[6\]
(b) Using your sketch state, giving a reason, the number of real solutions to the equation

\[x(x + 2)(3 - x) + \frac{2}{x} = 0 \]

[2]

Question 10 - Jan 2011
Solutions

1. \(x(x - 3)(x - 1) \)

2. (a) \(x(x^2 - 8x + 15) \)
 (b) \(x(x - 5)(x - 3) \)
 (c) \(y = x(x - 5)(x - 3) \)

3. (a) \(y = x^2(x - 2) \)
 (b) \(y = x(6 - x) \)
 (c) \((-2, -16), (3, 9) \)
4. (a)
\[y = (x + 3) (x - 1)^2 \]

(b) \(k = 3 \)

(c) \(x = \frac{4}{3}, \ x = -2 \)

5. \(x(x - 3)(x + 3) \)

6. (a) \(a = 4 \)

(b)
\[y = (x + 1)^2 (2 - x) \]

(c) The graphs intersect twice and so there are 2 solutions. We know they intersect twice since the point (1,4), on the reciprocal functions, lies above the point (1,2) on the cubic.
7. (a) \(x(x - 3)^2 \)
 (b)
 \[y = x(x - 3)^2 \]
 (0, 0) (3, 0)
 \[y = x(x - 3)^2 \]
 (c)

8. (a) \(x(x - 2)(x + 2) \)
 (b)
 \[y = x(x - 2)(x + 2) \]
 (2, 0) (5, 0)
 \[y = (x - 2)(x - 5)^2 \]
 (-50, 0)
 (c) \(y = 3x + 6 \)
(d) \(k = 4 \)

9. (a)

\[y = x^2(7 - x) \]

\[y = x(4 - x) \]

(b) -

(c) \((4 - 2\sqrt{3}, 8\sqrt{3} - 12)\). Note that both \(4 + 2\sqrt{3}\) and \(4 - 2\sqrt{3}\) are both positive.

10. (a)

\[y = x(x + 2)(3 - x) \]

\[y = -\frac{x}{2} \]

(b) There are 2 solutions since the curves intersect twice.