Differentiation - Past Edexcel Exam Questions

1. (a) Given that \(y = 5x^3 + 7x + 3 \), find
 i. \(\frac{dy}{dx} \) [3]
 ii. \(\frac{d^2y}{dx^2} \) [1]

 Question 2ai, 2a(ii) - January 2005

2. The curve \(C \) has equation \(y = 4x^2 + \frac{5-x}{x} \), \(x \neq 0 \). The point \(P \) on \(C \) has \(x \)-coordinate 1.
 (a) Show that the value of \(\frac{dy}{dx} \) at \(P \) is 3. [5]
 (b) Find an equation of the tangent to \(C \) at \(P \). [3]
 This tangent meets the \(x \)-axis at the point \((k, 0)\).
 (c) Find the value of \(k \). [2]

 Question 7 - January 2005

3. Given that \(y = 6x - \frac{4}{x^2} \), \(x \neq 0 \),
 (a) find \(\frac{dy}{dx} \). [2]

 Question 2a - May 2005

4. The curve \(C \) has equation \(y = \frac{1}{3}x^3 - 4x^2 + 8x + 3 \).
 The point \(P \) has coordinates \((3, 0)\).
 (a) Show that \(P \) lies on \(C \). [1]
 (b) Find the equation of the tangent to \(C \) at \(P \), giving your answer in the form \(y = mx + c \), where \(m \) and \(c \) are constants. [5]

 Another point \(Q \) also lies on \(C \). The tangent to \(C \) at \(Q \) is parallel to the tangent to \(C \) at \(P \).
(c) Find the coordinates of Q.

Question 10 - May 2005

5. Given that $y = 2x^2 - 6$, $x \neq 0$,

(a) find $\frac{dy}{dx}$.

Question 4 - January 2006

6. .

![Figure 1:](image)

Figure 1 shows part of the curve C with equation

$$y = (x - 1)(x^2 - 4).$$

The curve cuts the x-axis at the points P, $(1,0)$ and Q as shown in Figure 1.

(a) Write down the x-coordinate of P and the x-coordinate of Q.
(b) Show that $\frac{dy}{dx} = 3x^2 - 2x - 4$.
(c) Show that $y = x + 7$ is an equation of the tangent to C at the point $(-1,6)$.
(d) Find the exact coordinates of R.

The tangent to C at the point R is parallel to the tangent at the point $(-1,6)$.

www.studywell.com © StudyWell Publications Ltd. 2015
Question 9 - January 2006

7. Differentiate with respect to x

 (a) $x^4 + 6\sqrt{x}$, [3]

 (b) $\frac{(x+4)^2}{x}$. [4]

Question 5 - May 2006

8. Given that $y = 4x^3 - 1 + 2x^{\frac{1}{2}}$, $x > 0$, find $\frac{dy}{dx}$. [4]

Question 1 - January 2007

9. The curve C has equation $y = 4x + 3x^{\frac{3}{2}} - 2x^2$, $x > 0$.

 (a) Find an expression for $\frac{dy}{dx}$. [3]

 (b) Show that the point $P(4,8)$ lies on C. [1]

 (c) Show that an equation of the normal to C at the point P is $3y = x + 20$. [4]

 The normal to C at P cuts the x-axis at the point Q.

 (d) Find the length PQ, giving your answer in a simplified surd form. [3]

Question 8 - January 2007

10. Given that $y = 3x^2 + 4\sqrt{x}$, $x > 0$, find

 (a) $\frac{dy}{dx}$, [2]

 (b) $\frac{d^2y}{dx^2}$. [2]
11. The curve \(C \) has equation \(y = x^2(x - 6) + \frac{4}{x}, \ x > 0 \).

The points \(P \) and \(Q \) lie on \(C \) and have \(x \)-coordinates 1 and 2 respectively.

(a) Show that the length of \(PQ \) is \(\sqrt{170} \). \[4\]

(b) Show that the tangents to \(C \) at \(P \) and \(Q \) are parallel. \[5\]

(c) Find an equation for the normal to \(C \) at \(P \), giving your answer in the form \(ax + by + c = 0 \), where \(a \), \(b \) and \(c \) are integers. \[4\]

Question 10 - May 2007

12. (a) Write \(\frac{2\sqrt{x} + 3}{x} \) in the form \(2x^p + 3x^q \), where \(p \) and \(q \) are constants. \[2\]

Given that \(y = 5x - 7 + \frac{2\sqrt{x} + 3}{x}, \ x > 0 \),

(b) find \(\frac{dy}{dx} \), simplifying the coefficient of each term. \[4\]

Question 5 - January 2008

13.

\[f(x) = 3x + x^3, \ x > 0. \]

(a) Differentiate to find \(f'(x) \). \[2\]

Given that \(f'(x) = 15 \),

(b) find the value of \(x \). \[3\]

Question 4 - June 2008

14. The curve \(C \) has equation \(y = kx^3 - x^2 + x - 5 \), where \(k \) is a constant.
Differentiation

(a) Find \(\frac{dy}{dx} \).

The point \(A \) with \(x \)-coordinate \(-\frac{1}{2} \) lies on \(C \). The tangent to \(C \) at \(A \) is parallel to the line with equation \(2y - 7x + 1 = 0 \).

Find

(b) the value of \(k \),

(c) the value of the \(y \)-coordinate of \(A \).

Question 9 - June 2008

15. Given that \(\frac{2x^2-x^\frac{3}{2}}{\sqrt{x}} \) can be written in the form \(2x^p - x^q \),

(a) write down the value of \(p \) and the value of \(q \).

Given that \(y = 5x^4 - 3 + \frac{2x^2-x^\frac{3}{2}}{\sqrt{x}} \), \(x > 0 \),

(b) find \(\frac{dy}{dx} \), simplifying the coefficient of each term.

Question 6 - January 2009

16. The curve \(C \) has equation

\[y = 9 - 4x - \frac{8}{x}, \quad x > 0. \]

The point \(P \) on \(C \) has \(x \)-coordinate equal to 2.

(a) Show that the equation of the tangent to \(C \) at the point \(P \) is \(y = 1 - 2x \).

(b) Find an equation of the normal to \(C \) at the point \(P \).

The tangent at \(P \) meets the \(x \)-axis at \(A \) and the normal at \(P \) meets the \(x \)-axis at \(B \).

(c) Find the area of the triangle \(APB \).

Question 11 - January 2009

17. Given that \(y = 2x^3 + \frac{3}{x^2}, \ x \neq 0 \), find
18. \[f(x) = \frac{(3 - 4\sqrt{x})^2}{\sqrt{x}}, \quad x > 0 \]

(a) Show that \(f(x) = 9x^{-\frac{1}{2}} + Ax^\frac{1}{2} + B \), where \(A \) and \(B \) are constants to be found.

(b) Find \(f'(x) \).

(c) Evaluate \(f'(9) \).

Question 9 - June 2009

19. The curve \(C \) has equation

\[y = x^3 - 2x^2 - x + 9, \quad x > 0 \]

The point \(P \) has coordinates \((2,7)\).

(a) Show that \(P \) lies on \(C \).

(b) Find the equation of the tangent to \(C \) at \(P \), giving your answer in the form \(y = mx + c \), where \(m \) and \(c \) are constants.

The point \(Q \) also lies on \(C \).

Given that the tangent to \(C \) at \(Q \) is perpendicular to the tangent to \(C \) at \(P \),

(c) show that the \(x \)-coordinate of \(Q \) is \(\frac{1}{3}(2 + \sqrt{6}) \).

Question 11 - June 2009

20. Given that \(y = x^4 + x^\frac{1}{2} + 3 \), find \(\frac{dy}{dx} \).

Question 1 - January 2010
21. The curve \(C \) has equation
\[
y = \frac{(x+3)(x-8)}{x}, \quad x > 0.
\]
(a) Find \(\frac{dy}{dx} \) in its simplest form. \([4]\]
(b) Find an equation of the tangent to \(C \) at the point where \(x = 2 \). \([4]\]

Question 6 - January 2010

22. Given that
\[
y = 8x^3 - 4\sqrt{x} + \frac{3x^2 + 2}{x}, \quad x > 0,
\]
find \(\frac{dy}{dx} \). \([6]\]

Question 7 - May 2010

23. The curve \(C \) has equation
\[
y = \frac{1}{2}x^3 - 9x^{\frac{3}{2}} + \frac{8}{x} + 30, \quad x > 0.
\]
(a) Find \(\frac{dy}{dx} \). \([4]\]
(b) Show that the point \(P(4, -8) \) lies on \(C \). \([2]\]
(c) Find an equation of the normal to \(C \) at the point \(P \), giving your answer in the form \(ax + by + c = 0 \), where \(a \), \(b \) and \(c \) are integers. \([6]\]

Question 11 - January 2011

24. Given that \(y = 2x^5 + 7 + \frac{1}{x^4}, \quad x \neq 0 \), find, in their simplest form,
(a) \(\frac{dy}{dx} \). \([3]\]

Question 2a - May 2011
25. The curve C has equation

$$y = (x + 1)(x + 3)^2.$$

(a) Sketch C, showing the coordinates of the points at which C meets the axes.

(b) Show that $\frac{dy}{dx} = 3x^2 + 14x + 15$.

The point A, with x-coordinate -5, lies on C.

(c) Find the equation of the tangent to C at A, giving your answer in the form $y = mx + c$, where m and c are constants.

Another point B also lies on C. The tangents to C at A and B are parallel.

(d) Find the x-coordinate of B.

26. Given that $y = x^4 + 6x^{\frac{3}{2}}$, find in their simplest form

(a) $\frac{dy}{dx}$,

Question 10 - June 2011

27. The curve C_1 has equation

$$y = x^2(x + 2)$$

(a) Find $\frac{dy}{dx}$.

(b) Sketch C_1, showing the coordinates of the points where C_1 meets the x-axis.

The curve C_2 has equation

$$y = (x - k)^2(x - k + 2)$$

where k is a constant and $k > 2$.

(c) Find the gradient of C_1 at each point where C_1 meets the x-axis.

(d) Sketch C_2, showing the coordinates of the points where C_2 meets the x and y axes.

Question 1a - January 2012
28. \[y = 5x^3 - 6x^4 + 2x - 3. \]

(a) Find \(\frac{dy}{dx} \), giving each term in its simplest form. [4]

(b) Find \(\frac{d^2y}{dx^2} \). [2]

Question 4 - May 2012

29. The curve \(C \) has equation

\[y = 2x - 8\sqrt{x} + 5, \quad x \geq 0 \]

(a) Find \(\frac{dy}{dx} \), giving each term in its simplest form. [3]

The point \(P \) on \(C \) has \(x \)-coordinate equal to \(\frac{1}{4} \).

(b) Find the equation of the tangent to \(C \) at the point \(P \), giving your answer in the form \(y = ax + b \), where \(a \) and \(b \) are constants. [4]

The tangent to \(C \) at the point \(Q \) is parallel to the line with equation \(2x - 3y + 18 = 0 \).

(c) Find the coordinates of \(Q \). [5]

Question 11 - January 2013

30. \[f'(x) = \frac{(3 - x^2)^2}{x^2}, \quad x \neq 0 \]

(a) Show that

\[f'(x) = 9x^{-2} + A + Bx^2, \]

where \(A \) and \(B \) are constants to be found. [3]

(b) Find \(f''(x) \). [2]
31. Differentiate with respect to x, giving each answer in its simplest form.

(a) $(1 - 2x)^2$
(b) $\frac{x^3 + 6\sqrt{x}}{2x^4}$

Question 7 - May 2014
Solutions

1. (a) i. $15x^2 + 7$
 ii. $30x$
2. (a) -
 (b) $y = 3x + 5$
 (c) $k = \frac{-5}{3}$
3. (a) $6 + 8x^{-3}$
4. (a) -
 (b) $y = -7x + 21$
 (c) $(5, -\frac{46}{3})$
5. (a) $4x + 18x^{-4}$
6. (a) -2, 2
 (b) -
 (c) -
 (d) $\left(\frac{5}{3}, -\frac{22}{27}\right)$
7. (a) $4x^3 + 3x^{-\frac{1}{2}}$
 (b) $1 - 16x^{-2}$
8. $12x^2 + x^{-\frac{1}{2}}$
9. (a) $4 + \frac{9}{2}x^{\frac{1}{2}} - 4x$
 (b) -
 (c) -
 (d) $8\sqrt{10}$
10. (a) $6x + 2x^{-\frac{1}{2}}$
 (b) $6 - x^{-\frac{3}{2}}$
11. (a) -
 (b) -
 (c) $x - 13y - 14 = 0$
12. (a) \(2x^{-\frac{1}{2}} + 3x^{-1}\)
 (b) \(5 - x^{-\frac{3}{2}} - 3x^{-2}\)

13. (a) \(3 + 3x^2\)
 (b) \(x = 2\)

14. (a) \(3kx^2 - 2x + 1\)
 (b) \(k = 2\)
 (c) \(-6\)

15. (a) \(p = \frac{3}{2}, q = 1\)
 (b) \(20x^3 + 3x^{\frac{1}{2}} - 1\)

16. (a)
 (b) \(y = \frac{1}{2}x - 4\)
 (c) \(\frac{45}{4}\)

17. (a) \(6x^2 - 6x^{-3}\)

18. (a) \(A = 16, B = -24\)
 (b) \(-\frac{9}{2}x^{-\frac{3}{2}} + 8x^{-\frac{1}{2}}\)
 (c) \(\frac{5}{2}\)

19. (a)
 (b) \(y = 3x + 1\)
 (c)

20. \(4x^2 + \frac{1}{3}x^{-\frac{2}{3}}\)

21. (a) \(1 + 24x^{-2}\)
 (b) \(y = 7x - 29\)

22. \(24x^2 - 2x^{-\frac{1}{2}} + 3 - 2x^{-2}\)

23. (a) \(\frac{3}{2}x^2 - \frac{27}{4}x^\frac{1}{2} - 8x^{-2}\)
 (b)
 (c) \(2x - 7y - 64 = 0\)

24. \(10x^4 - 3x^{-4}\)
25. (a)

\[y = (x + 1)(x + 3)^2 \]

(b) -

(c) \[y = 20x + 84 \]

(d) \[x = \frac{1}{3} \]

26. \[4x^3 + 3x^{-\frac{1}{2}} \]

27. (a) \[3x^2 + 4x \]

(b) .

(c) 4, 0
Differentiation

(d).

\[y = (x - k)^2(x - k + 2) \]

28. (a) \(15x^2 - 8x^{\frac{1}{3}} + 2 \)
 (b) \(30x - \frac{8}{3}x^{-\frac{2}{3}} \)

29. (a) \(2 - 4x^{-\frac{1}{4}} \)
 (b) \(y = -6x + 3 \)
 (c) \((9, -1) \)

30. (a) \(A = -6, B = 1 \)
 (b) \(-18x^{-3} + 2x \)

31. (a) \(-4 + 8x \)
 (b) \(\frac{3}{2}x^2 - \frac{9}{2}x^{-\frac{5}{3}} \)