Circles - Past Edexcel Exam Questions

1. The points A and B have coordinates $(5,-1)$ and $(13,11)$ respectively.

 (a) find the coordinates of the mid-point of AB.

 Given that AB is a diameter of the circle C,

 (b) find an equation for C.

 [2]

 [2]

 Question 2 - January 2005

2. The circle C, with centre at the point A, has equation $x^2 + y^2 - 10x + 9 = 0$.

 Find

 (a) The coordinates of A,

 (b) the radius of C,

 (c) the coordinates of the points at which C crosses the x-axis.

 Given that the line l with gradient $\frac{7}{2}$ is a tangent to C, and that l touches C at the point T,

 (d) find an equation of the line which passes through A and T.

 [3]

 Question 8 - June 2005

3. .

 Figure 1:

 ![Figure 1](image)

 In Figure 1, $A(4,0)$ and $B(3,5)$ are the end points of a diameter of the circle C.

 Find
(a) the exact length of AB, [2]
(b) the coordinates of the mid-point P of AB, [2]
(c) an equation for the circle C. [3]

Question 3 - January 2006

4. The line $y = 3x - 4$ is a tangent to the circle C, touching C at the point $P(2, 2)$, as shown in Figure 2.

![Figure 2:](image)

The point Q is the centre of C.

(a) Find an equation of the straight line through P and Q. [3]

Given that Q lies on the line $y = 1$,
(b) show that the x-coordinate of Q is 5. [1]
(c) find an equation for C. [4]

Question 7 - May 2006

5. The line joining the points (-1,4) and (3,6) is a diameter of the circle C.

Find an equation for C. [6]

Question 3 - January 2007
6. The points A and B lie on a circle with centre P, as shown in Figure 3. The point A has coordinates $(1,-2)$ and the mid-point M of AB has coordinates $(3,1)$. The line l passes through the points M and P.

(a) Find an equation for l. [4]

Given that the x-coordinate of P is 6,
(b) use your answer to part (a) to show that the y-coordinate of P is -1, [1]
(c) find an equation for the circle. [4]

Question 7 - May 2007

7. A circle C has centre $M(6,4)$ and radius 3.

(a) Write down the equation of the circle in the form

$$(x - a)^2 + (y - b)^2 = r^2$$

[2]

Figure 4 shows the circle C. The point T lies on the circle and the tangent at T passes through the point $P(12,6)$. The line MP cuts the circle at Q.
(b) Show that the angle TMQ is 1.0766 radians to 4 decimal places. [4]

The shaded region TPQ is bounded by the straight lines TP, QP and the arc TQ, as shown in Figure 4.
(c) Find the area of the shaded region TPQ. Give your answer to 3 decimal places.

Question 8 - January 2008

8. The circle C has centre $(3, 1)$ and passes through the point $P(8, 3)$.

(a) Find an equation for C. \[4\]
(b) Find an equation for the tangent to C at P, giving your answer in the form $ax + by + c = 0$, where a, b and c are integers. \[5\]

Question 5 - June 2008

9. The points $P(-3, 2)$, $Q(9, 10)$ and $R(a, 4)$ lie on the circle C, as shown in Figure 5. Given that PR is a diameter of C,

(a) show that $a = 13$, \[3\]
(b) find an equation for C. \[5\]

Question 5 - January 2009

10. The circle C has equation

$$x^2 + y^2 - 6x + 4y = 12$$
Circle Questions

Figure 5:

(a) Find the centre and the radius of C. [5]

The point $P(-1, 1)$ and the point $Q(7, -5)$ both lie on C.

(b) Show that PQ is a diameter of C. [2]

The point R lies on the positive y-axis and the angle $PRQ = 90^\circ$.

(c) Find the coordinates of R. [4]

Question 6 - June 2009

11.

Figure 6 shows a sketch of the circle C with centre N and equation

$$(x - 2)^2 + (y + 1)^2 = \frac{169}{4}$$

(a) Write down the coordinates of N. [2]

(b) Find the radius of C. [1]

The chord AB of C is parallel to the x-axis, lies below the x-axis and is of length 12 units as shown in Figure 6.

(c) Find the coordinates of A and the coordinates of B. [5]

(d) Show that angle $ANB = 134.8^\circ$, to the nearest 0.1 of a degree. [2]

The tangents to C at the points A and B meet at the point P.

www.studywell.com © StudyWell Publications Ltd. 2015
(e) Find the length AP, giving your answer to 3 significant figures. [2]

Question 9 - January 2010

12. The circle C has centre $A(2, 1)$ and passes through the point $B(10, 7)$.

(a) Find an equation for C. [4]

The line l_1 is the tangent to C at the point B.

(b) Find an equation for l_1. [4]

The line l_2 is parallel to l_1 and passes through the mid-point of AB.

Given that l_2 intersects C at the points P and Q,

(c) find the length of PQ, giving your answer in its simplest surd form. [3]

Question 10 - June 2010

13. The points A and B have coordinates (-2,11) and (8,1) respectively.

Given that AB is a diameter of the circle C,

(a) show that the centre of C has coordinates (3,6), [1]
(b) find an equation for C, [4]

(c) Verify that the point (10,7) lies on C. [1]

(d) Find an equation of the tangent to C at the point (10,7), giving your answer in the form $y = mx + c$, where m and c are constants. [4]

Question 9 - January 2011

14. The circle C has equation

\[x^2 + y^2 + 4x - 2y - 11 = 0. \]

Find

(a) the coordinates of the centre of C, [2]

(b) the radius of C, [2]

(c) the coordinates of the points where C crosses the y-axis, giving your answers as simplified surds. [4]

Question 4 - May 2011

15. A circle C has centre (-1,7) and passes through the point (0,0). Find an equation for C. [4]

Question 2 - January 2012

16. The circle C with centre T and radius r has equation

\[x^2 + y^2 - 20x - 16y + 139 = 0 \]

(a) Find the coordinates of the centre of C. [3]

(b) Show that $r = 5$. [2]

The line L has equation $x = 13$ and crosses C at the points P and Q as shown in Figure 7.
(c) Find the y coordinate of P and the y coordinate of Q. [3]

Given that, to 3 decimal places, the angle PTQ is 1.855 radians,
(d) find the perimeter of the sector PTQ. [3]

17. The circle C has equation

$$x^2 + y^2 - 20x - 24y + 195 = 0.$$

The centre of C is at the point M.

(a) Find
 i. the coordinates of the point M.
 ii. the radius of the circle C. [5]

N is the point with coordinates (25,32).
(b) Find the length of the line MN. [2]

The tangent to C at a point P on the circle passes through N.
(c) Find the length of the line NP. [2]

Question 3 - May 2012

Question 5 - January 2013
18. The circle C has radius 5 and touches the y-axis at the point $(0, 9)$, as shown in Figure 8.

(a) Write down an equation for the circle C, that is shown in Figure 8. [3]

A line through the point $P(8, -7)$ is a tangent to the circle C at the point T.

(b) Find the length of PT. [3]

19. .

Question 10 - May 2013
Figure 9 shows a circle C with centre Q and radius 4 and the point T which lies on C. The tangent to C at the point T passes through the origin O and $OT = 6\sqrt{5}$. Given that the coordinates of Q are $(11, k)$, where k is a positive constant,

(a) find the exact value of k,

(b) find an equation for C.

Question 9 - May 2014
Circle Questions

Solutions

1. (a) (9,5)
 (b) \((x - 9)^2 + (y - 5)^2 = 52\)

2. (a) (5,0)
 (b) 4
 (c) (1,0), (9,0)
 (d) \(y = -\frac{2}{7}x + \frac{10}{7}\)

3. (a) \(\sqrt{26}\)
 (b) \((\frac{7}{2}, \frac{5}{2})\)
 (c) \((x - \frac{7}{2})^2 + (y - \frac{5}{2})^2 = \frac{13}{2}\)

4. (a) \(y = -\frac{1}{3}x + \frac{8}{3}\)
 (b) -
 (c) \((x - 5)^2 + (y - 1)^2 = 10\)

5. \((x - 1)^2 + (y - 5)^2 = 5\)

6. (a) \(y = -\frac{2}{3}x + 3\)
 (b) -
 (c) \((x - 6)^2 + (y + 1)^2 = 26\)

7. (a) \((x - 6)^2 + (y - 4)^2 = 9\)
 (b) -
 (c) 3.507

8. (a) \((x - 3)^2 + (y - 1)^2 = 29\)
 (b) \(5x + 2y - 46 = 0\)

9. (a) -
 (b) \((x - 5)^2 + (y - 3)^2 = 65\)

10. (a) centre=\((-3,2)\), radius=5
 (b) -
Circle Questions

11. (a) (2,-1)
 (b) \(\frac{13}{2} \)
 (c) \(A (-4, -\frac{7}{2}), B (8, -\frac{7}{2}) \)
 (d) -
 (e) 15.6

12. (a) \((x - 2)^2 + (y - 1)^2 = 100\)
 (b) \(y = -\frac{4}{3}x + \frac{61}{3}\)
 (c) \(10\sqrt{3}\)

13. (a) -
 (b) \((x - 3)^2 + (y - 6)^2 = 50\)
 (c) -
 (d) \(y = -7x + 77\)

14. (a) (-2,1)
 (b) 4
 (c) \((0, 1 \pm 2\sqrt{3})\)

15. \((x + 1)^2 + (y - 7)^2 = 50\)

16. (a) (10,8)
 (b) -
 (c) 12, 4
 (d) 19.3

17. (a) i. (10,12)
 ii. 7
 (b) 25
 (c) 24

18. (a) \((x + 5)^2 + (y - 9)^2 = 25\)
 (b) 20

19. (a) \(k = 5\sqrt{3}\)
 (b) \((x - 11)^2 + (y - 5\sqrt{3})^2 = 16\)