

Logarithms - Past Edexcel Exam Questions

(Question 7 - C2 May 2018)

(i) Find the value of y for which

$$1.01^{y-1} = 500.$$

Give your answer to 2 decimal places.

[2]

(ii) Given that

$$2\log_4(3x+5) = \log_4(3x+8) + 1, \quad x > -\frac{5}{3}$$

(a) show that

$$9x^2 + 18x - 7 = 0.$$

[4]

(b) Hence solve the equation

$$2\log_4(3x+5) = \log_4(3x+8) + 1, \quad x > -\frac{5}{3}$$

[2]

2. (Question 7 - C2 May 2017)

(i) $2\log(x+a) = \log(16a^6)$, where a is a positive constant.

Find x in terms of a, giving your answer in its simplest form. [3]

(ii) $\log_3(9y+b) - \log_3(2y-b) = 2$, where b is a positive constant.

Find y in terms of b, giving your answer in its simplest form. [4]

(Question 8 - C2 May 2016)

(i) Given that

$$\log_3(3b+1) - \log_3(a-2) = -1, \quad a > 2$$

express b in terms of a.

[3]

(ii) Solve the equation

$$2^{2x+5} - 7(2^x) = 0$$

giving your answer to 2 decimal places.

[4]

(Solutions based entirely on graphical or numerical methods are not acceptable)

4.

(Question 7 - C2 May 2015)

- (i) Use logarithms to solve the equation $8^{2x+1} = 24$, giving your answer to 3 decimal places. [3]
- (ii) Find the values of y such that

$$\log_2(11y - 3) - \log_2 3 - 2\log_2 y = 1, \quad y > \frac{3}{11}$$

[6]

5.

(Question 8 - C2 May 2014)

(a) Sketch the graph of

$$y = 3^x, \quad x \in \mathbb{R}$$

showing the coordinates of any points at which the graph crosses the axes. [2]

(b) Use algebra to solve the equation

$$3^{2x} - 9(3^x) + 18 = 0$$

giving your answers to 2 decimal places where appropriate.

[5]

(Question 7 - C2 May 2013)

(i) Find the exact value of x for which

$$\log_2(2x) = \log_2(5x+4) - 3$$

[4]

(ii) Given that

$$\log_a y + 3\log_a 2 = 5,$$

express y in terms of a.

Give your answer in its simplest form.

[3]

7.

(Question 6 - C2 January 2013)

Given that

$$2\log_2(x+15) - \log_2 x = 6,$$

(a) show that
$$x^2 - 34x + 225 = 0$$
.

[5]

(b) Hence, or otherwise, solve the equation

$$2\log_2(x+15) - \log_2 x = 6$$

[2]

8.

(Question 2 - C2 May 2012)

Find the values of x such that

$$2\log_3 x - \log_3(x - 2) = 2$$

[5]

9.

(Question 4 - C2 January 2012)

Given that $y = 3x^2$,

(a) show that $\log_3 y = 1 + 2\log_3 x$.

[3]

(b) Hence, or otherwise, solve the equation

[3]

$$1 + 2\log_3 x = \log_3(28x - 9).$$

10.

(Question 3 - C2 May 2011)

Find, giving your answer to 3 significant figures where appropriate, the value of x for which

(a)
$$5^x = 10$$
,

(b)
$$\log_3(x-2) = -1$$
. [2]

11.

(Question 8 - C2 January 2011)

- (a) Sketch the graph of $y = 7^x$, $x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes. [2]
- (b) Solve the equation

$$7^{2x} - 4(7^x) + 3 = 0,$$

giving your answers to 2 decimal places where appropriate.

[6]

12.

(Question 7 - C2 June 2010)

(a) Given that

$$2\log_3(x-5) - \log_3(2x-13) = 1,$$

show that $x^2 - 16x + 64 = 0$.

$$4 = 0. ag{5}$$

(b) Hence, or otherwise, solve $2\log_3(x-5) - \log_3(2x-13) = 1$. [2]

13.

(Question 5 - C2 January 2010)

(a) Find the positive value of x such that

$$\log_x 64 = 2.$$

[2]

(b) Solve for x

$$\log_2{(11-6x)} = 2\log_2{(x-1)} + 3$$

[6]

14.

(Question 8 - C2 June 2009)

(a) Find the value of y such that

$$\log_2 y = -3$$

[2]

(b) Find the values of x such that

$$\frac{\log_2 32 + \log_2 16}{\log_2 x} = \log_2 x$$

[5]

15.

(Question 4 - C2 January 2009)

Given that 0 < x < 4 and

$$\log_5(4-x) - 2\log_5 x = 1,$$

find the value of x.

[6]

16.

(Question 4 - C2 June 2008)

- (a) Find, to 3 significant figures, the value of x for which $5^x = 7$.
- [2]

(b) Solve the equation

$$5^{2x} - 12(5^x) + 35 = 0$$

[4]

(Question 5 - C2 January 2008)

Given that a and b are positive constants, solve the simultaneous questions

$$a = 3b$$
,

$$\log_3 a + \log_3 b = 2$$

Give your answers as exact numbers.

[6]

18.

(Question 6 - C2 May 2007)

- (a) Find, to 3 significant figures, the value of x for which $8^x = 0.8$.
- [2]

(b) Solve the equation

$$2\log_3 x - \log_3 7x = 1$$

[4]

19.

(Question 4 - C2 January 2007)

Solve the equation

$$5^x = 17,$$

giving your answer to 3 significant figures.

[3]

20.

(Question 3 - C2 May 2006)

(a) Write down the value of $\log_6(36)$.

- [1]
- (b) Express $2\log_a(3) + \log_a(11)$ as a single logarithm to the base a.

[3]

21.

(Question 2 - C2 June 2005)

Solve

(a) $5^x = 8$, giving your answer to 3 significant figures,

[3]

(b) $\log_2(x+1) - \log_2(x) = \log_2(7)$.

[3]

Solutions

- 1. (i) 625.56
 - (ii) (a) -

(b)
$$x = \frac{1}{3}$$

- 2. (i) $x = 4a^3 a$
 - (ii) $y = \frac{10}{9}b$
- 3. (i) $b = \frac{a-5}{9}$
 - (ii) x = -2.19
- 4. (i) x = 0.264
 - (ii) $y = \frac{1}{3}, \frac{3}{2}$
- 5. (a) See Figure below.

- (b) x = 1, x = 1.63
- 6. (a) $x = \frac{4}{11}$
 - (b) $y = \frac{a^5}{8}$
- 7. (a) -
 - (b) x = 9, x = 25
- 8. x = 3, x = 6
- 9. (a) -
 - (b) $x = \frac{1}{3}, x = 9$

10. (a)
$$x = 1.43$$

(b)
$$x = \frac{7}{3}$$

11. (a) See Figure below.

(b)
$$x = 0, x = 0.56$$

(b)
$$x = 8$$

13. (a)
$$x = 8$$

(b)
$$x = \frac{3}{2}$$

14. (a)
$$y = \frac{1}{8}$$

(b)
$$x = \frac{1}{8}, 8$$

15.
$$x = \frac{4}{5}$$

(b)
$$x = 1, x = 1.21$$

17.
$$a = 3\sqrt{3}, b = \sqrt{3}$$

18. (a)
$$-0.107$$

(b)
$$x = 21$$

19.
$$x = 1.76$$

(b)
$$\log_a 99$$

21. (a)
$$x = 1.29$$

(b)
$$x = \frac{1}{6}$$