Logarithms - Past Edexcel Exam Questions

1.

(Question 7 - C2 May 2018)
(i) Find the value of y for which

$$
1.01^{y-1}=500
$$

Give your answer to 2 decimal places.
(ii) Given that

$$
2 \log _{4}(3 x+5)=\log _{4}(3 x+8)+1, \quad x>-\frac{5}{3}
$$

(a) show that

$$
9 x^{2}+18 x-7=0
$$

(b) Hence solve the equation

$$
2 \log _{4}(3 x+5)=\log _{4}(3 x+8)+1, \quad x>-\frac{5}{3}
$$

2.

(Question 7 - C2 May 2017)
(i)

$$
2 \log (x+a)=\log \left(16 a^{6}\right), \quad \text { where } a \text { is a positive constant. }
$$

Find x in terms of a, giving your answer in its simplest form.
(ii)

$$
\log _{3}(9 y+b)-\log _{3}(2 y-b)=2, \quad \text { where } b \text { is a positive constant. }
$$

Find y in terms of b, giving your answer in its simplest form.
3.
(Question 8 - C2 May 2016)
(i) Given that

$$
\log _{3}(3 b+1)-\log _{3}(a-2)=-1, \quad a>2
$$

express b in terms of a.
(ii) Solve the equation

$$
\begin{equation*}
2^{2 x+5}-7\left(2^{x}\right)=0 \tag{4}
\end{equation*}
$$

giving your answer to 2 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable)
4.
(Question 7 - C2 May 2015)
(i) Use logarithms to solve the equation $8^{2 x+1}=24$, giving your answer to 3 decimal places.
(ii) Find the values of y such that

$$
\log _{2}(11 y-3)-\log _{2} 3-2 \log _{2} y=1, \quad y>\frac{3}{11}
$$

(a) Sketch the graph of

$$
y=3^{x}, \quad x \in \mathbb{R}
$$

showing the coordinates of any points at which the graph crosses the axes.
(b) Use algebra to solve the equation

$$
3^{2 x}-9\left(3^{x}\right)+18=0
$$

giving your answers to 2 decimal places where appropriate.
6.
(Question 7 - C2 May 2013)
(i) Find the exact value of x for which

$$
\begin{equation*}
\log _{2}(2 x)=\log _{2}(5 x+4)-3 \tag{4}
\end{equation*}
$$

(ii) Given that

$$
\log _{a} y+3 \log _{a} 2=5
$$

express y in terms of a.
Give your answer in its simplest form.

7.

(Question 6 - C2 January 2013)
Given that

$$
2 \log _{2}(x+15)-\log _{2} x=6
$$

(a) show that $x^{2}-34 x+225=0$.
(b) Hence, or otherwise, solve the equation

$$
2 \log _{2}(x+15)-\log _{2} x=6
$$

8.

Find the values of x such that

$$
2 \log _{3} x-\log _{3}(x-2)=2
$$

9.

Given that $y=3 x^{2}$,
(a) show that $\log _{3} y=1+2 \log _{3} x$.
(b) Hence, or otherwise, solve the equation

$$
1+2 \log _{3} x=\log _{3}(28 x-9)
$$

10.

Find, giving your answer to 3 significant figures where appropriate, the value of x for which
(a) $5^{x}=10$,
(b) $\log _{3}(x-2)=-1$.
11.
(Question 8 - C2 January 2011)
(a) Sketch the graph of $y=7^{x}, x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes.
(b) Solve the equation

$$
7^{2 x}-4\left(7^{x}\right)+3=0
$$

giving your answers to 2 decimal places where appropriate.
12.
(a) Given that

$$
2 \log _{3}(x-5)-\log _{3}(2 x-13)=1,
$$

show that $x^{2}-16 x+64=0$.
(b) Hence, or otherwise, solve $2 \log _{3}(x-5)-\log _{3}(2 x-13)=1$.
13.
(Question 5-C2 January 2010)
(a) Find the positive value of x such that

$$
\log _{x} 64=2 .
$$

(b) Solve for x

$$
\log _{2}(11-6 x)=2 \log _{2}(x-1)+3
$$

14.

(a) Find the value of y such that

$$
\log _{2} y=-3
$$

(b) Find the values of x such that

$$
\frac{\log _{2} 32+\log _{2} 16}{\log _{2} x}=\log _{2} x
$$

15.

Given that $0<x<4$ and

$$
\log _{5}(4-x)-2 \log _{5} x=1
$$

find the value of x.
16.
(a) Find, to 3 significant figures, the value of x for which $5^{x}=7$.
(b) Solve the equation

$$
5^{2 x}-12\left(5^{x}\right)+35=0
$$

17.

(Question 5 - C2 January 2008)
Given that a and b are positive constants, solve the simultaneous questions

$$
\begin{array}{r}
a=3 b, \\
\log _{3} a+\log _{3} b=2
\end{array}
$$

Give your answers as exact numbers.
18.
(Question 6 - C2 May 2007)
(a) Find, to 3 significant figures, the value of x for which $8^{x}=0.8$.
(b) Solve the equation

$$
2 \log _{3} x-\log _{3} 7 x=1
$$

19.

(Question 4 - C2 January 2007)
Solve the equation

$$
5^{x}=17,
$$

giving your answer to 3 significant figures.
20.
(Question 3-C2 May 2006)
(a) Write down the value of $\log _{6}(36)$.
(b) Express $2 \log _{a}(3)+\log _{a}(11)$ as a single logarithm to the base a.
21.
(Question 2 - C2 June 2005)
Solve
(a) $5^{x}=8$, giving your answer to 3 significant figures,
(b) $\log _{2}(x+1)-\log _{2}(x)=\log _{2}(7)$.

Solutions

1. (i) 625.56
(ii) (a) -
(b) $x=\frac{1}{3}$
2. (i) $x=4 a^{3}-a$
(ii) $y=\frac{10}{9} b$
3. (i) $b=\frac{a-5}{9}$
(ii) $x=-2.19$
4. (i) $x=0.264$
(ii) $y=\frac{1}{3}, \frac{3}{2}$
5. (a) See Figure below.

(b) $x=1, x=1.63$
6. (a) $x=\frac{4}{11}$
(b) $y=\frac{a^{5}}{8}$
7. (a) -
(b) $x=9, x=25$
8. $x=3, x=6$
9. (a) -
(b) $x=\frac{1}{3}, x=9$

Study Well

10. (a) $x=1.43$
(b) $x=\frac{7}{3}$
11. (a) See Figure below.

(b) $x=0, x=0.56$
12. (a) -
(b) $x=8$
13. (a) $x=8$
(b) $x=\frac{3}{2}$
14. (a) $y=\frac{1}{8}$
(b) $x=\frac{1}{8}, 8$
15. $x=\frac{4}{5}$
16. (a) 1.21
(b) $x=1, x=1.21$
17. $a=3 \sqrt{3}, b=\sqrt{3}$
18. (a) -0.107
(b) $x=21$
19. $x=1.76$
20. (a) 2
(b) $\log _{a} 99$
21. (a) $x=1.29$
(b) $x=\frac{1}{6}$
