Polynomials - Past Edexcel Exam Questions

1.

(Question 3-C2 May 2018)

$$
f(x)=24 x^{3}+A x^{2}-3 x+B
$$

where A and B are constants.
When $f(x)$ is divided by $(2 x-1)$ the remainder is 30 .
(a) Show that $A+4 B=114$.

Given also that $(x+1)$ is a factor of $f(x)$
(b) find another equation in A and B.
(c) Find the value of A and the value of B.
(d) Hence find a quadratic factor of $f(x)$.
2.

$$
f(x)=-6 x^{3}-7 x^{2}+40 x+21
$$

(a) Use factor theorem to show that $(x+3)$ is a factor of $f(x)$.
(b) Factorise $f(x)$ completely.
(c) Hence solve the equation

$$
6\left(2^{3 y}\right)+7\left(2^{2 y}\right)=40\left(2^{y}\right)+21
$$

giving your answer to 2 decimal places.
3.
(Question 4-C2 May 2016)

$$
f(x)=6 x^{3}+13 x^{2}-4
$$

(a) Use the remainder theorem to find the remainder when $f(x)$ is divided by $(2 x+3)$.
(b) Use the factor theorem to show that $(x+2)$ is a factor of $f(x)$.
(c) Factorise $f(x)$ completely.
4.
(Question 3-C2 May 2015)

$$
f(x)=6 x^{3}+3 x^{2}+A x+B, \quad \text { where } A \text { and } B \text { are constants. }
$$

Given that when $f(x)$ is divided by $(x+1)$ the remainder is 45 ,
(a) show that $B-A=48$.

Given also that $(2 x+1)$ is a factor of $f(x)$,
(b) find the value of A and the value of B.
(c) Factorise $f(x)$ fully.
5.
(Question 2-C2 May 2014)

$$
f(x)=2 x^{3}-7 x^{2}+4 x+4
$$

(a) Use the factor theorem to show that $(x-2)$ is a factor of $f(x)$.
(b) Factorise $f(x)$ completely.
6.
(Question 3-C2 May 2013)

$$
f(x)=2 x^{3}-5 x^{2}+a x+18
$$

where a is a constant.
Given that $(x-3)$ is a factor of $f(x)$,
(a) show that $a=-9$.
(b) factorise $f(x)$ completely.

Given that

$$
g(y)=2\left(3^{3 y}\right)-5\left(3^{2 y}\right)-9\left(3^{y}\right)+18
$$

(c) find the values of y that satisfy $g(y)=0$, giving your answers to 2 decimal places where appropriate.
7.
$f(x)=a x^{3}+b x^{2}-4 x-3$, where a and b are constants.
Given that $(x-1)$ is a factor of $f(x)$,
(a) show that

$$
a+b=7
$$

Given also that, when $f(x)$ is divided by $(x+2)$, the remainder is 9 .
(b) find the value of a and the value of b, showing each step of your working.
8.
(Question 4-C2 May 2012)

$$
f(x)=2 x^{3}-7 x^{2}-10 x+24
$$

(a) Use the factor theorem to show that $(x+2)$ is a factor of $f(x)$.
(b) Factorise $f(x)$ completely.
9.

$$
f(x)=x^{3}+a x^{2}+b x+3, \quad \text { where } a \text { and } b \text { are constants. }
$$

Given that when $f(x)$ is divided by $(x+2)$ the remainder is 7 ,
(a) show that $2 a-b=6$.

Given also that when $f(x)$ is divided by $(x-1)$ the remainder is 4 ,
(b) find the value of a and the value of b.
10.
(Question 1 - C2 May 2011)

$$
f(x)=2 x^{3}-7 x^{2}-5 x+4
$$

(a) Find the remainder when $f(x)$ is divided by $(x-1)$.
(b) Use the factor theorem to show that $(x+1)$ is a factor of $f(x)$.
(c) Factorise $f(x)$ completely.
11.

$$
f(x)=x^{4}+x^{3}+2 x^{2}+a x+b
$$

where a and b are constants.
When $f(x)$ is divided by $(x-1)$ the remainder is 7 .
(a) Show that $a+b=3$.

When $f(x)$ is divided by $(x+2)$ the remainder is -8 .
(b) Find the value of a and the value of b.

$$
f(x)=3 x^{3}-5 x^{2}-58 x+40
$$

(a) Find the remainder when $f(x)$ is divided by $(x-3)$.

Given that $(x-5)$ is a factor of $f(x)$,
(b) find all the solutions of $f(x)=0$.

$$
f(x)=2 x^{3}+a x^{2}+b x-6
$$

where a and b are constants.
When $f(x)$ is divided by $(2 x-1)$ the remainder is -5 .
When $f(x)$ is divided by $(x+2)$ there is no remainder.
(a) Find the value of a and the value of b.
(b) Factorise $f(x)$ completely.

Solutions

1. (a) -
(b) $A+B=21$
(c) $A=-10, B=31$
(d) $24 x^{2}-34 x+31$
2. (a) -
(b) $(x+3)(2 x+1)(7-3 x)$
(c) $y=1.22$
3. (a) 5
(b) $f(-2)=0$
(c) $(x+2)(3 x+2)(2 x-1)$
4. (a) -
(b) $A=-96, B=-48$
(c) $3(2 x+1)(x+4)(x-4)$
5. (a) $f(2)=0$
(b) $(x-2)^{2}(2 x+1)$
6. (a) -
(b) $(x-3)(2 x-3)(x+2)$
(c) $y=1, y=0.37$
7. (a) -
(b) $\ldots a=2, b=5$
8. (a) $f(-2)=0$
(b) $(x+2)(2 x-3)(x-4)$
9. (a) -
(b) $a=2, b=-2$
10. (a) -6
(b) $f(-1)=0$
(c) $(x+1)(2 x-1)(x-4)$
11. (a) -
(b) $a=9, b=-6$
12. (a) -98
(b) $x=5, x=\frac{2}{3}, x=-4$
13. (a) $a=5, b=-1$
(b) $(x+2)(2 x+3)(x-1)$
