[2]

Surds Past Edexcel Exam Questions

1. (a) (Question 1 - C1 May 2018)

Simplify

$$\sqrt{48} - \frac{6}{\sqrt{3}}$$

giving your answer in the form $a\sqrt{3}$, where a is an integer to be found. [2]

- (b) (Indices Question)
- 2. (a) (Question 3 C1 May 2016)

Simplify

$$\sqrt{50} - \sqrt{18}$$

Write your answer in the form $a\sqrt{2}$, where a is an integer.

(b) Hence, or otherwise, simplify

$$\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}}$$

giving your answer in the form $b\sqrt{c}$ where b and c are integers and $b \neq 1$. [3]

3. (Question 1 - C1 May 2015)

Simplify

(a)
$$(2\sqrt{5})^2$$

(b) $\frac{\sqrt{2}}{2\sqrt{5}-3\sqrt{2}}$ giving your answer in the form $a+\sqrt{b}$, where a and b are integers. [4]

4. (Question 6 - C1 May 2014)

(a) Write $\sqrt{80}$ in the form $c\sqrt{5}$, where c is a positive constant. [1]

A rectangle R has a length of $(1 + \sqrt{5})$ cm and an area of $\sqrt{80}$ cm².

(b) Calculate the width of R in cm. Express your answer in the form $p + q\sqrt{5}$, where p and q are integers to be found. [4]

5.

(Question 1 - C1 May 2013)

Simplify

$$\frac{7+\sqrt{5}}{\sqrt{5}-1}$$

giving your answer in the form $a + b\sqrt{5}$, where a and b are integers.

6.

(Question 3 - C1 Jan 2013)

(a) Express

$$\left(5 - \sqrt{8}\right) \left(1 + \sqrt{2}\right)$$

in the form $a + b\sqrt{2}$, where a and b are integers.

[3]

[4]

(b) Express

$$\sqrt{80} + \frac{30}{\sqrt{5}}$$

in the form $c\sqrt{5}$, where c is an integer.

[3]

7.

(Question 3 - C1 May 2012)

Show that $\frac{2}{\sqrt{12}-\sqrt{8}}$ can be written in the form $\sqrt{a}+\sqrt{b}$, where a and b are integers.

[5]

8.

(Question 2 - C1 Jan 2012)

(a) Simplify

$$\sqrt{32} + \sqrt{18}$$

giving your answer in the form $a\sqrt{2}$, where a is an integer.

[2]

(b) Simplify

$$\frac{\sqrt{32}+\sqrt{18}}{3+\sqrt{2}},$$

giving your answer in the form $b\sqrt{2} + c$, where b and c are integers.

[4]

9.

(Question 3 - C1 Jan 2011)

Simplify

$$\frac{5-2\sqrt{3}}{\sqrt{3}-1},$$

giving your answer in the form $p + q\sqrt{3}$, where p and q are rational numbers.

[4]

10.

(Question 1 - C1 May 2010)

Write

$$\sqrt{75} - \sqrt{27}$$

in the form $k\sqrt{x}$, where k and x are integers.

[2]

11.

(Question 2 - C1 Jan 2010)

(a) Expand and simplify $(7 + \sqrt{5})(3 - \sqrt{5})$.

- [3]
- (b) Express $\frac{7+\sqrt{5}}{3+\sqrt{5}}$ in the form $a+b\sqrt{5}$, where a and b are integers.

[3]

12.

(Question 1 - C1 Jun 2009)

Simplify

(a)
$$(3\sqrt{7})^2$$
,

[1]

(b)
$$(8+\sqrt{5})(2-\sqrt{5})$$
.

[3]

13. (Question 3 - C1 Jan 2009) Expand and simplify $(\sqrt{7}+2)(\sqrt{7}-2)$. [2]

14. (Question 3 - C1 Jan 2008)

Simplify

$$\frac{5-\sqrt{3}}{2+\sqrt{3}}$$

giving your answer in the form $a + b\sqrt{3}$, where a and b are integers. [4]

15. (Question 1 - C1 May 2007) Simplify $(3 + \sqrt{5})(3 - \sqrt{5})$. [2]

16. (Question 2 - C1 Jan 2007)

- (a) Express $\sqrt{108}$ in the form $a\sqrt{3}$, where a is an integer. [1]
- (b) Express $(2 \sqrt{3})^2$ in the form $b + c\sqrt{3}$, where b and c are integers to be found. [3]

17. (Question 6 - C1 May 2006)

- (a) Expand and simplify $(4 + \sqrt{3})(4 \sqrt{3})$. [2]
- (b) Express $\frac{26}{4+\sqrt{3}}$ in the form $a+b\sqrt{3}$, where a and b are integers. [2]

18. (Question 5 - C1 Jan 2006)

- (a) Write $\sqrt{45}$ in the form $a\sqrt{5}$, where a is an integer. [1]
- (b) Express $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})}$ in the form $b+c\sqrt{5}$, where b and c are integers. [5]

Solutions

1. (a)
$$2\sqrt{3}$$
, $a=2$

2. (a)
$$2\sqrt{2}$$
, $a=2$

(b)
$$3\sqrt{6}$$

(b)
$$3 + \sqrt{10}$$
, $a = 3$, $b = 10$

4. (a)
$$4\sqrt{5}$$
, $c=4$

(b)
$$5 - \sqrt{5}$$
, $p = 5$ $q = -1$

5.
$$3 + 2\sqrt{5}$$
, $a = 3$, $b = 2$

6. (a)
$$1 + 3\sqrt{2}$$
, $a = 1$ $b = 3$

(b)
$$10\sqrt{5}$$
, $c = 10$

7.
$$\sqrt{3} + \sqrt{2}$$
, $a = 3$ $b = 2$ (or vice versa)

8. (a)
$$7\sqrt{2}$$
, $a = 7$

(b)
$$3\sqrt{2} - 2$$
, $b = 3$ $c = -2$

9.
$$-\frac{1}{2} + \frac{3}{2}\sqrt{3}$$
, $p = -\frac{1}{2}$, $q = \frac{3}{2}$

10.
$$2\sqrt{3}$$
, $k = 2$ $x = 3$

11. (a)
$$16 - 4\sqrt{5}$$

(b)
$$4 - \sqrt{5}$$
, $a = 4$, $b = -1$

(b)
$$11 - 6\sqrt{5}$$

14.
$$13 - 7\sqrt{3}$$
, $a = 13$ $b = -7$

- 15. 4
- 16. (a) $6\sqrt{3}$, a = 6
 - (b) $7 4\sqrt{3}$, b = 7 c = -4
- 17. (a) 13
 - (b) $8 2\sqrt{3}$, a = 8 b = -2
- 18. (a) $3\sqrt{5}$, a = 3
 - (b) $7 + 3\sqrt{5}$, b = 7 c = 3