Binomial Expansion - Past Edexcel Exam Questions

1.

(Question 2-C2 May 2018)
(a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$
(2+k x)^{7}
$$

where k is a non-zero constant. Give each term in its simplest form.
Given that the coefficient of x^{3} in this expansion is 1890 ,
(b) find the value of k.
2.
(Question 1-C2 May 2017)
Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$
\left(3-\frac{1}{3} x\right)^{5}
$$

giving each term in its simplest form.
3.
(Question 5-C2 May 2016)
(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(2-9 x)^{4}
$$

giving each term in its simplest form.

$$
f(x)=(1+k x)(2-9 x)^{4}, \quad \text { where } k \text { is a constant }
$$

The expansion, in ascending powers of x, of $f(x)$ up to and including the term in x^{2} is

$$
A-232 x+B x^{2}
$$

where A and B are constants.
(b) Write down the value of A.
(c) Find the value of k.
(d) Hence find the value of B.
4.
(Question 1 - C2 May 2015)
Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
\left(2-\frac{x}{4}\right)^{10}
$$

giving each term in its simplest form.
5.
(Question 3-C2 May 2014)
(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(2-3 x)^{6}
$$

giving each term in its simplest form.
(b) Hence, or otherwise, find the first 3 terms, in ascending powers of x, of the expansion of

$$
\left(1+\frac{x}{2}\right)(2-3 x)^{6}
$$

6.

(Question 2-C2 May 2013)
(a) Use the binomial theorem to find all the terms of the expansion of

$$
(2+3 x)^{4}
$$

Give each term in its simplest form.
(b) Write down the expansion of

$$
(2-3 x)^{4}
$$

in ascending powers of x, giving each term in its simplest form.
7.
(Question 1 - C2 Jan 2013)
Find the first 3 terms, in ascending powers of x, in the binomial expansion of

$$
(2-5 x)^{6}
$$

Give each term in its simplest form.
8.
(Question 1 - C2 May 2012)
Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(2-3 x)^{5}
$$

giving each term in its simplest form.
9.
(a) Find the first 4 terms of the binomial expansion, in ascending powers of x, of

$$
\left(1+\frac{x}{4}\right)^{8}
$$

giving each term in its simplest form.
(b) Use your expansion to estimate the value of $(1.025)^{8}$, giving your answer to 4 decimal places.
10.
(Question 2-C2 May 2011)
(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(3+b x)^{5}
$$

where b is a non-zero constant. Give each term in its simplest form.
Given that, in this expansion, the coefficient of x^{2} is twice the coefficient of x,
(b) find the value of b.
11.
(Question 5-C2 Jan 2011)
Given that $\binom{40}{4}=\frac{40!}{4!!}$,
(a) write down the value of b.

In the binomial expansion of $(1+x)^{40}$, the coefficients of x^{4} and x^{5} are p and q respectively.
(b) Find the value of $\frac{q}{p}$.
12.
(Question 4-C2 June 2010)
(a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$
(1+a x)^{7}
$$

where a is a constant. Give each term in its simplest form.
Given that the coefficient of x^{2} in this expansion is 525 ,
(b) find the possible values of a.
13.
(Question 1 - C2 Jan 2010)
Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(3-x)^{6}
$$

and simplify each term.

Solutions

1. (a) $128+448 k x+672 k^{2} x^{2}+560 k^{3} x^{3}$
(b) $k=1.5$
2. $243-135 x+30 x^{2}-\frac{10}{3} x^{3}$
3. (a) $16-288 k x+1944 x^{2}$
(b) $A=16$
(c) $k=\frac{7}{2}$
(d) $B=936$
4. $1024-1280 x+720 x^{2}$
5. (a) $64-576 x+2160 x^{2}$
(b) $64-544 x+1872 x^{2}$
6. (a) $16+96 x+216 x^{2}+216 x^{3}+81 x^{4}$
(b) $16-96 x+216 x^{2}-216 x^{3}+81 x^{4}$
7. $64-960 x+6000 x^{2}$
8. $32-240 x+720 x^{2}$
9. (a) $1+2 x+\frac{7}{4} x^{2}+\frac{7}{8} x^{3}$
(b) $1+0.2+0.0175+0.000875 \approx 1.2184$
10. (a) $243+405 b x+270 b^{2} x^{2}$
(b) $b=3$
11. (a) $b=36$
(b) $\frac{q}{p}=\frac{36}{5}$ when simplified.
12. (a) $1+7 a x+21 a^{2} x^{2}+35 a^{3} x^{3}$
(b) $a= \pm 5$
13. $729-1458 x+1215 x^{2}$
