Please check the examination details below before entering your candidate information		
Candidate surname		Other names
Pearson Edexcel Level 3 GCE	Centre Numbe	r Candidate Number
Time 2 hours	Paper referen	8MA0/01
Mathematics Advanced Subsidiary PAPER 1: Pure Mathematics		
You must have: Mathematical Formulae and Statistical Tables (Green), calculator		

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 16 questions in this question paper. The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each guestion.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

1. In this que	estion you should show all stages of your working.	
Solutions relying on calculator technology are not acceptable.		
Using algebra, solve the inec	quality	
	$x^2 - x > 20$	
writing your answer in set no	otation.	(3)

Question 1 continued	
	(Total for Question 1 is 3 marks)

2.	. In this question you should show all stages of your working.		
	Solutions relying on calculator technology are not acceptable.		
	Given		
	$\frac{9^{x-1}}{3^{y+2}} = 81$		
	express y in terms of x , writing your answer in simplest form.	(3)	

Question 2 continued	
	(Total for Question 2 is 3 marks)

3.	Find	
	$\int \frac{3x^4 - 4}{2x^3} \mathrm{d}x$	
	writing your answer in simplest form.	(4)

Question 3 continued	
	(Total for Organian 2 in America)
	(Total for Question 3 is 4 marks)

4.	[In this question the unit vectors \mathbf{i} and \mathbf{j} are due east and due north respectively.]	
	A stone slides horizontally across ice.	
	Initially the stone is at the point $A(-24\mathbf{i} - 10\mathbf{j})$ m relative to a fixed point O .	
	After 4 seconds the stone is at the point $B(12\mathbf{i} + 5\mathbf{j})$ m relative to the fixed point O .	
	The motion of the stone is modelled as that of a particle moving in a straight line at constant speed.	
	Using the model,	
	(a) prove that the stone passes through O ,	(2)
	(b) calculate the speed of the stone.	(3)

Question 4 continued
(Total for Question 4 is 5 marks)

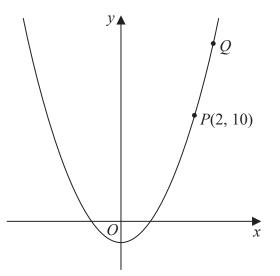


Figure 1

Figure 1 shows part of the curve with equation $y = 3x^2 - 2$

The point P(2, 10) lies on the curve.

(a) Find the gradient of the tangent to the curve at P.

(2)

The point Q with x coordinate 2 + h also lies on the curve.

(b) Find the gradient of the line PQ, giving your answer in terms of h in simplest form.

(3)

(c) Explain briefly the relationship between part (b) and the answer to part (a).

(1)

Question 5 continued			
(Total for Question 5 is 6 marks)			

6.	In this question you should show all stages of your working	
0.	In this question you should show all stages of your working.	
	Solutions relying on calculator technology are not acceptable.	
	(a) Using algebra, find all solutions of the equation	
	$3x^3 - 17x^2 - 6x = 0$	
		(3)
	(b) Hence find all real solutions of	
	$3(y-2)^6 - 17(y-2)^4 - 6(y-2)^2 = 0$	
		(3)

Question 6 continued		
	(Total for Question 6 is 6 marks)	

7.	A parallelogram <i>PQRS</i> has area 50 cm ²	
	Given	
	• PQ has length 14 cm	
	• QR has length 7 cm	
	• angle SPQ is obtuse	
	find	
	(a) the size of angle SPQ, in degrees, to 2 decimal places,	
		(3)
	(b) the length of the diagonal SQ, in cm, to one decimal place.	
		(2)

Question 7 continued
(Total for Question 7 is 5 marks)

8.	$g(x) = (2 + ax)^8$ where a is a constant	
	Given that one of the terms in the binomial expansion of $g(x)$ is $3402x^5$	
	(a) find the value of a.	
		(4)
	Using this value of a ,	
	(b) find the constant term in the expansion of	
	$\left(1+\frac{1}{x^4}\right)(2+ax)^8$	
		(3)

Question 8 continued
(Total for Question 8 is 7 marks)
, , , , , , , , , , , , , , , , , , , ,

9. Find the value of the constant k , $0 < k < 9$, such

9م	6			
1	$\frac{6}{\sqrt{x}}$	dx	=	20
.] 1-	\sqrt{x}			

(4)

Question 9 continued
(Total for Question 9 is 4 marks)

10. A student is investigating the following statement about natural numbers.	
" $n^3 - n$ is a multiple of 4"	
(b) Use a counterexample to show that the statement is not always true.	(4) (1)

Question 10 continued	

Question 10 continued

Question 10 continued
(Total for Question 10 is 5 marks)
(20mi ioi Question 10 is e marks)

11. The owners of a nature reserve decided to increase the area of the reserve covered by trees.

Tree planting started on 1st January 2005.

The area of the nature reserve covered by trees, $A \text{ km}^2$, is modelled by the equation

$$A = 80 - 45e^{ct}$$

where c is a constant and t is the number of years after 1st January 2005.

Using the model,

(a) find the area of the nature reserve that was covered by trees just before tree planting started.

(1)

On 1st January 2019 an area of $60 \, \text{km}^2$ of the nature reserve was covered by trees.

(b) Use this information to find a complete equation for the model, giving your value of *c* to 3 significant figures.

(4)

On 1st January 2020, the owners of the nature reserve announced a long-term plan to have $100 \, \text{km}^2$ of the nature reserve covered by trees.

(c) State a reason why the model is not appropriate for this plan.

(1)

Question 11 continued
(Total for Question 11 is 6 marks)

12. In this question you should show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

(i) Solve, for $0 < \theta \le 450^{\circ}$, the equation

$$5\cos^2\theta = 6\sin\theta$$

giving your answers to one decimal place.

(5)

(ii) (a) A student's attempt to solve the question

"Solve, for
$$-90^{\circ} < x < 90^{\circ}$$
, the equation $3 \tan x - 5 \sin x = 0$ "

is set out below.

$$3\tan x - 5\sin x = 0$$

$$3\frac{\sin x}{\cos x} - 5\sin x = 0$$

$$3\sin x - 5\sin x \cos x = 0$$

$$3 - 5\cos x = 0$$

$$\cos x = \frac{3}{5}$$

$$x = 53.1^{\circ}$$

Identify two errors or omissions made by this student, giving a brief explanation of each.

(2)

The first four positive solutions, in order of size, of the equation

$$\cos(5\alpha + 40^\circ) = \frac{3}{5}$$

are α_1 , α_2 , α_3 and α_4

(b) Find, to the nearest degree, the value of α_4

(2)

Question 12 continued

Question 12 continued

Question 12 continued	
	(Total for Question 12 is 9 marks)

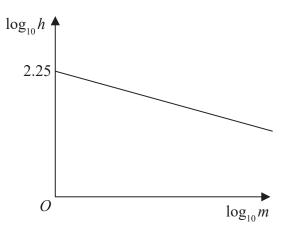


Figure 2

The resting heart rate, h, of a mammal, measured in beats per minute, is modelled by the equation

$$h = pm^q$$

where p and q are constants and m is the mass of the mammal measured in kg.

Figure 2 illustrates the linear relationship between $\log_{10} h$ and $\log_{10} m$

The line meets the vertical $\log_{10} h$ axis at 2.25 and has a gradient of -0.235

(a) Find, to 3 significant figures, the value of p and the value of q.

(3)

A particular mammal has a mass of 5 kg and a resting heart rate of 119 beats per minute.

(b) Comment on the suitability of the model for this mammal.

(3)

(c) With reference to the model, interpret the value of the constant p.

(1)

Question 13 continued

Question 13 continued

Question 13 continued	
(Tot	al for Question 13 is 7 marks)

14. A curve C has equation y = f(x) where

$$f(x) = -3x^2 + 12x + 8$$

(a) Write f(x) in the form

$$a(x+b)^2+c$$

where a, b and c are constants to be found.

(3)

The curve C has a maximum turning point at M.

(b) Find the coordinates of M.

(2)

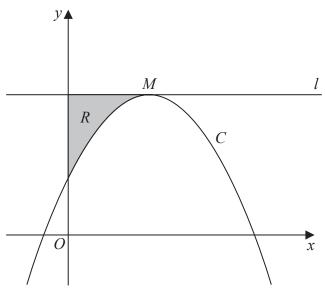


Figure 3

Figure 3 shows a sketch of the curve *C*.

The line l passes through M and is parallel to the x-axis.

The region *R*, shown shaded in Figure 3, is bounded by *C*, *l* and the *y*-axis.

(c) Using algebraic integration, find the area of R.

(5)

Question 14 continued

Question 14 continued

Question 14 continued	
	4.16.00 (* 44.40 *)
(10	tal for Question 14 is 10 marks)

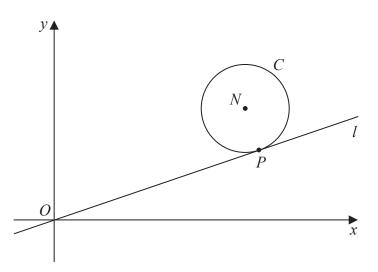


Figure 4

Figure 4 shows a sketch of a circle C with centre N(7, 4)

The line *l* with equation $y = \frac{1}{3}x$ is a tangent to *C* at the point *P*.

Find

(a) the equation of line PN in the form y = mx + c, where m and c are constants,

(2)

(b) an equation for C.

(4)

The line with equation $y = \frac{1}{3}x + k$, where k is a non-zero constant, is also a tangent to C.

(c) Find the value of k.

(3)

Question 15 continued

Question 15 continued
(Total for Question 15 is 9 marks)
(Total for Question 13 is 9 marks)

16. The curve C has equation y = f(x) where

$$f(x) = ax^3 + 15x^2 - 39x + b$$

and a and b are constants.

Given

- the point (2, 10) lies on *C*
- the gradient of the curve at (2, 10) is -3
- (a) (i) show that the value of a is -2
 - (ii) find the value of b.

(4)

(b) Hence show that C has no stationary points.

(3)

(c) Write f(x) in the form (x-4)Q(x) where Q(x) is a quadratic expression to be found.

(2)

(d) Hence deduce the coordinates of the points of intersection of the curve with equation

$$y = f(0.2x)$$

and the coordinate axes.

(2)

Question 16 continued

TOTAL FOR PAPER IS 100 MARKS