Search
StudyWell
  • Home
  • Maths
    • AS Maths
    • A2 Maths
    • Pure Maths
    • Statistics
    • Mechanics
  • Study Resources
    • Questions by Topic
    • Past & Practice Papers
    • AS Pure Maths Videos
  • Shop
  • My Account
  • Home
  • Maths
    • AS Maths
    • A2 Maths
    • Pure Maths
    • Statistics
    • Mechanics
  • Study Resources
    • Questions by Topic
    • Past & Practice Papers
    • AS Pure Maths Videos
  • Shop
  • My Account

Cubics

StudyWell > Algebra and Functions in A-Level Maths > Cubics

Factorising Cubics

The most basic cubics questions might ask you to factorise a simple cubic where a factor of x can be taken out first. For instance, the terms in the expression $3x^3-2x^2+5x$ have a common factor of x and so factor x  out to give $x\left(3x^2-2x+5\right)$. You might think that this can be factorised further, however, in this case the quadratic cannot be factorised. This can be seen by noting that the discriminant of $3x^2-2x+5$ is $(-2)^2-4\times 3\times 5=-56$ which is negative and so $3x^2-2x+5$ has no roots. – see Discriminants. It follows that the cubic cannot be factorised further. In most cases, however, there will be some more factoring required. See Example 1.

In addition to the above, other cubics questions might involve factorising a more general cubic and may require knowledge of the factor theorem. See Example 2.

Sketching Cubics

  • Firstly, identify whether the cubic is positive or negative.sketching cubics
  • Then, substitute $x=0$ into the cubic expression to identify the $y$-intercept.
  • Next, factorise if possible and set $y=0$ to identify the roots. Note that, in $y=x(x+1)^2$ for example, $x=-1$ is a repeated root and the curve must touch the x-axis at $x=-1$.
  • Finally, place the graph on the axes so that all the above criteria are satisfied.

Examples

Example 1

Factorise the following:

  1. $x^3+4x^2+3x$
  2. $x^3-7x^2+10x$
  3. $x^3-16x$
  4. $2x^3+7x^2-9x$
Show Solution

  1. $x\left(x^2+4x+3\right)=x(x+3)(x+1)$
  2. $x\left(x^2-7x+10\right)=x(x-2)(x-5)$
  3. $x\left(x^2-16\right)=x(x+4)(x-4)$
  4. $x\left(2x^2+7x-9\right)=x(2x+9)(x-1)$

Example 2
  1. Given that $x=-2$ is a root of the cubic $x^3+x^2-x+2$, factorise it completely.
  2. In addition, factorise $f(x)=x^3-x^2-x+1$ completely.
Show Solution

  1. Since $x=-2$ is a root, $(x+2)$ is a factor and factoring it out gives $(x+2)(x^2-x+1)$ which can’t be factorised any further.
  2. By inspection, we can see that $x=1$ is a root of $f(x)$ and so $(x-1)$ is a factor. Using polynomial division or inspection we have $f(x)=(x-1)(x^2-1)$ which factorises completely to $f(x)=(x-1)(x-1)(x+1)=(x-1)^2(x+1)$.

The following PDF has 9 cubic sketching exercises to complete. You will find the solutions to the exercises on the second page.

Open Cubic Sketching Exercise in New Window

Cubics

What Next?

  • See examples of cubics in real life
  • Go back to PURE MATHS
  • See QUESTIONS BY TOPIC
  • Go to PAST and PRACTICE PAPERS

Questions by Topic

CubicsExamQuestions
  • Open Cubics Questions in New Window
  • See more Questions by Topic

Videos

See more videos

AS Maths Cubics

See more videos

About

StudyWell is a website for students studying A-Level Maths (or equivalent. course). We have lots of resources including A-Level content delivered in manageable bite-size pieces, practice papers, past papers, questions by topic, worksheets, hints, tips, advice and much, much more.

Quick Links

  • CONTACT US
  • REGISTER
  • Edexcel Exam Timetable
  • Edexcel Formula Booklet
  • Edexcel Grade Boundaries
  • Edexcel Large Data Set
  • Edexcel Specification

Top Pages

  • A2 Maths (second year of A-Level Maths)
  • AS Maths (first year of A-Level Mathematics)
  • Blog
  • My account
  • Practice Papers
  • Questions by Topic
  • Shop
  • Membership Levels

Useful Websites

  • DESMOS
  • GeoGebra
  • Maths Challenges
  • STEP papers
  • UCAS
  • Wolfram Alpha
  • Friend of StudyWell: Elite Locksmiths
Footer logo
Copyright © 2022 StudyWell
MENU logo
  • Home
  • Maths
    • AS Maths
    • A2 Maths
    • Pure Maths
    • Statistics
    • Mechanics
  • Study Resources
    • Questions by Topic
    • Past & Practice Papers
    • AS Pure Maths Videos
  • Shop
  • My Account