Search
StudyWell
  • Home
  • Maths
    • AS Maths
    • A2 Maths
    • Pure Maths
    • Statistics
    • Mechanics
  • Study Resources
    • Questions by Topic
    • Past & Practice Papers
    • AS Pure Maths Videos
  • Shop
  • My Account
  • Home
  • Maths
    • AS Maths
    • A2 Maths
    • Pure Maths
    • Statistics
    • Mechanics
  • Study Resources
    • Questions by Topic
    • Past & Practice Papers
    • AS Pure Maths Videos
  • Shop
  • My Account

How to do Proof by Deduction – Examples & Videos

StudyWell > Proof – mathematical logic and reasoning > How to do Proof by Deduction – Examples & Videos

Proof by Deduction Notes

Proof by deduction is a process in maths where we show that a statement is true using well-known mathematical principles. With this in mind, try not to confuse it with Proof by Induction or Proof by Exhaustion.

The word deduce means to establish facts through reasoning or make conclusions about a particular instance by referring to a general rule or principle. Furthermore, deduction is the noun associated with the verb deduce. It follows that proof by deduction is the demonstration that something is true by showing that it must be true for all instances that could possibly be considered. Hence, it is not sufficient to check that a statement is true for a few example numbers – this is a mistake that is often made.

In maths, proof by deduction usually requires the use of algebraic symbols to represent certain numbers. For this reason, the following are very useful to know when trying to prove a statement by deduction:

  • Use $n$ to represent any integer. Use $n$ and $m$ to represent any two integers.
  • Consequently, use $n$, $n+1$ and $n+2$  to represent 3 consecutive integers.
  • In addition, if $n$ represents any integer, then $2n$ represents any even integer and $2n+1$ represents any odd integer.
  • It follows that $2n$ and $2n+2$ represent any two consecutive even numbers. Alternatively, $2n-1$ and $2n+1$ represent any two consecutive odd numbers.
  • Furthermore, use $n^2 $ and $m^2$ to represent any two square numbers.
  • $n^2$ and $(n+1)^2$ represent any two consecutive square numbers and so on…

Note that a certain amount of algebra is required when completing proofs. For example, expanding $(n+1)^2$ as $(n+1)(n+1)=n^2+2n+1$. See examples and videos for more details.

Examples of Proof by Deduction

Example 1

Prove that the difference between the squares of any two consecutive integers is equal to the sum of those integers.

Show Solution to Example 1

Firstly, choose $n$ and $n+1$ to be any two consecutive integers. Next, take the squares of these integers to get $n^2$ and $(n+1)^2$ where $(n+1)^2=(n+1)(n+1)=n^2+2n+1$. The difference between these numbers is $n^2+2n+1-n^2=2n+1$. Adding together the original two consecutive numbers also gives $n+n+1=2n+1$. Hence, we have proved by deduction that the difference between the squares of any two consecutive integers is equal to the sum of those integers.

Example 2

Prove that $x^2-4x+9$ is always positive.

Show Solution to Example 2

By completing the square $x^2-4x+9$ can be written as $(x-2)^2+5$. Note that $(x-2)^2$ is positive for any $x$ as it is a square number . Subsequently, adding 5 will retain its positivity.

Exam-Style Proof Questions

proof by deduction

Download 16 Exam-Style Proof Questions.

More on Proof

  • See PROOF BY EXHAUSTION
  • See DISPROOF BY COUNTER-EXAMPLE
  • Go back to PURE MATHS
  • See QUESTIONS BY TOPIC
  • Go to PAST and PRACTICE PAPERS

Where does the word proof come from?

Proof by Deduction Videos

See more videos

AS Maths Proof

More Proof by Deduction videos

Even more Proof by Deduction videos

About

StudyWell is a website for students studying A-Level Maths (or equivalent. course). We have lots of resources including A-Level content delivered in manageable bite-size pieces, practice papers, past papers, questions by topic, worksheets, hints, tips, advice and much, much more.

Quick Links

  • CONTACT US
  • REGISTER
  • Edexcel Exam Timetable
  • Edexcel Formula Booklet
  • Edexcel Grade Boundaries
  • Edexcel Large Data Set
  • Edexcel Specification

Top Pages

  • A2 Maths (second year of A-Level Maths)
  • AS Maths (first year of A-Level Mathematics)
  • Blog
  • My account
  • Practice Papers
  • Questions by Topic
  • Shop
  • Membership Levels

Useful Websites

  • DESMOS
  • GeoGebra
  • Maths Challenges
  • STEP papers
  • UCAS
  • Wolfram Alpha
  • Friend of StudyWell: Elite Locksmiths
Footer logo
Copyright © 2022 StudyWell
MENU logo
  • Home
  • Maths
    • AS Maths
    • A2 Maths
    • Pure Maths
    • Statistics
    • Mechanics
  • Study Resources
    • Questions by Topic
    • Past & Practice Papers
    • AS Pure Maths Videos
  • Shop
  • My Account