Differentiation – finding the gradient of curves
StudyWell > Differentiation – finding the gradient of curves
Differentiation
Differentiation (which, like integration, is part of calculus) is the process we use to find gradients. Recall that during GCSE Maths, we saw how to find the gradient of a straight line. At A-Level Maths, we learn how to find the gradient of a curve. Differentiation from first principles is based on finding the gradient of the straight line obtained when zooming in at a point on a curve.
The list below shows the differentiation topics covered is AS-Maths or equivalent including differentiation from first principles. In A2 Maths, these concepts are explored further and we introduce more techniques to differentiate more complicated functions.
Other Areas in AS-Maths
- PROOF – proof by deduction, proof by exhaustion, disproof by counterexample
- ALGEBRA & FUNCTIONS – completing the square, cubics, curve sketching, discriminant, indices, inequalities, polynomials, quadratics, simultaneous equations, surds, transformations
- COORDINATE GEOMETRY – straight lines, equation of a circle
- SEQUENCES & SERIES – binomial expansion
- TRIGONOMETRY – non-right-angled triangles, trigonometric equations, trigonometric graphs, trigonometric identities
- EXPONENTIALS & LOGS – exponential & logarithmic graphs, logs, their rules and solving log equations, growth & decay, differentiating e to the kx
- INTEGRATION – fundamental theorem of calculus and integrating powers of x, definite integrals
- NUMERICAL METHODS – (not covered at AS Level)
- VECTORS – two-dimensional vectors, vector arithmetic, vectors in context
Other Areas in A2-Maths
- PROOF – proof by contradiction
- ALGEBRA & FUNCTIONS – modulus of a function, partial fractions, inverse and composite functions, compound transformations
- COORDINATE GEOMETRY – parametric equations
- SEQUENCES & SERIES – arithmetic series (and sigma notation), geometric series, sequences, binomial expansion
- TRIGONOMETRY – radians, arc length & area of a sector, small angle approximations, reciprocal trigonometric functions, inverse trigonometric functions, double & compound angle formulae
- EXPONENTIALS & LOGARITHMS – compound transformations
- INTEGRATION – further integration, integration using trigonometric identities, integration by substitution, integration by parts, integration using partial fractions, solving differential equations,
- NUMERICAL METHODS – locating roots using iteration (including Newton-Raphson), trapezium rule
- VECTORS – 3D vectors