Parametric & implicit differentiation
As well as basic differentiation and differentiation using the product, quotient or chain rule there is parametric differentiation and implicit differentiation. In the former, we can apply parametric differentiation when two functions are defined parametrically. In the latter, we can apply implicit differentiation when a function is defined implicitly.
Parametric Differentiation
Recall that parametric equations may look as follows:
,
where is the parameter. See more on parametric equations. In order to find the derivative
, we can first find the Cartesian equation or we can use parametric differentiation. We can perform parametric differentiation by noting that
and using the derivatives of the parametric equations:
Hence, we find the derivative of with respect to
by dividing the derivatives of the original parametric equations. For example, suppose
and
for
. In this case,
and
. It follows that
(since
) . This can also be seen when we find the Cartesian equation first. The Cartesian equation is
and so
as before (more on differentiating polynomials). See Examples 1 and 2 for more parametric differentiation.
Implicit Differentiation
If a Cartesian equation is defined implicitly, we can use implicit differentiation to find an expression for . In these cases, we must treat
as an unknown function of
. For example, consider the implicit equation
. We could find the explicit equation
and so
(see more on differentiating polynomials). However, we can also differentiate implicitly by differentiating both sides of
with respect to
as it is. The right hand side becomes 0 but the left hand side is a product (treating
as an unknown function of
) and so the product rule should be used:
It follows that which we can rearrange to get
. This is the same expression that we obtained finding the Cartesian equation first. In most cases at this level it is much more complicated to find the explicit equation so using implicit differentiation makes more sense.
Consider finding an expression for in a second example of an implicit equation:
. Both terms on the left are product whereas the right hand side is a polynomial term. Differentiating both sides with respect to
gives
. Note that
is a chain:
is an unknown function of
that is then squared. Hence, we use the chain rule and the derivative of
is
. In order to obtain an expression for the derivative we rearrange to make
the subject:
. We obtain this by keeping all derivative terms on the left and then factorising. See Examples 3 and 4.